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An upwind line relaxation algorithm for the Navier-Stokes equations 
which employs inner iterations is applied to a supersonic and a sub- 
sonic test problem. The purpose of using inner iterations is to accelerate 
the convergence to steady-state solutions, thereby reducing the overall 
CPU time. A convergence criterion is developed to assist in automating 
the inner iterative procedure. The ability of the line inner iterative proce- 
dure to mimic the quadratic convergence of the direct solver method is 
confirmed in both test problems, but some of the non-quadratic inner 
iterative results were more efficient than the quadratic results. In the 
supersonic test case, the use of inner iterations was very efficient in 
reducing the residual to machine zero. For this test problem, the inner 
iteration method required only about 65% of the CPU time which was 
required by the most efficient line relaxation method without inner 
iterations. In the subsonic test case, poor matrix conditioning forced 
the use of under-relaxation in order to obtain convergence of the inner 
iterations, resulting in an overall method which was less efficient 
than line relaxation methods which employ a more conventional CPU 
savings strategy. 0 i 992 Academic PWSS. 1~. 

INTRODUCTION 

Although recently developed upwind methods for the 
Euler and Navier-Stokes equations require two to three 
times more computations per time step than do their central 
difference counterparts, the continued development of 
upwind methods is highly motivated by their naturally dis- 
sipative nature. That is, in contrast with central difference 
methods, upwind methods have the important advantage of 
requiring the addition of no explicit damping terms for 
stability and control of oscillations in the solution. For- 

tunately, when compared with implicit central difference 
schemes, implicit upwind formulations result in coefficient 
matrices having a character which is much more nearly 
diagonally dominant. Through the exploitation of the 
superior conditioning of these coefficient matrices, great 
progress has recently been made in the development of 
highly efficient upwind relaxation methods [l-S]. The 
proven efficiency and overall convergence rates of these 
relaxation methods have helped overcome the extra com- 
putational time per time step which is involved in upwind 
methods. 

The purpose of this work is to present an investigation of 
the performance of upwind relaxation algorithms for the 
Navier-Stokes equations, where an “inner iteration” 
strategy is employed at each time step. In the present work, 
an inner iteration is simply an iteration on the discrete 
“linearized” system of equations, and a “time step,” also 
referred to as an “outer iteration,” is in fact an iteration 
on the discrete “non-linear” problem. The research is 
motivated by a desire to increase the overall computational 
efficiency of relaxation procedures for obtaining converged 
steady-state solutions to the governing equations of fluid 
flow. The fundamental convergence acceleration strategy 
which is behind the use of inner iterations is found in the 
large error reductions per iteration which can be achieved 
with Newton’s root finding method (i.e., direct solver 
methods). Briefly stated, the inner iteration strategy 
involves the use of well-known, standard relaxation 
methods to perform “inner iterations,” in order to more 
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accurately solve each linear system of equations which (for 
implicit methods) must be solved for the incremental 
change in the dependent variables, at every outer iteration. 
The result is an accelerated (even quadratic) rate of error 
reduction for each outer iteration. The primary question 
which is addressed in this research is whether or not the 
extra CPU time spent doing inner iterations can be 
effectively offset by the accelerated rate of error reduction 
of the outer iterations, to produce a more efficient overall 
algorithm for the Navier-Stokes equations. 

A general presentation on the theory of Newtoniterative 
methods, including the use of inner iterations, is given in 
Ref. [9], including two applications to the solution of non- 
linear partial differential equations (not the equations of 
fluid flow). In Refs. [S-7], the use of inner iterations for the 
full governing equations of fluid flow is suggested and 
discussed, but implementation and testing is not reported 
in these references. The use of inner iterations is applied to 
the full (non-linear) potential equation of fluid flow in 
Ref. [lo], and the use of preconditioning matrices is 
included to accelerate the convergence of the inner 
iterations. 

In Ref. [ 111, the use of inner iterations is combined with 
a direct solver method to solve the thin-layer Navier-Stokes 
equations for laminar flow over an airfoil. In the work of 
Ref. [ 111, the focus of the work is the use of direct solver 
methods, where a huge computer storage capacity is 
required, even in two dimensions. Inner iterations are 
employed in Ref. [ 111 only to avoid total neglect of a small 
number of implicit terms which lie at extreme distances 
outside the otherwise relatively small bandwidth of the 
full implicit coefficient matrix. Direct LU factorization is 
performed only on the main banded part of the matrix. In 
contrast with the work of Ref. [ 111, the present work 
focuses on inner iteration schemes and specifically on those 
methods which completely avoid the huge storage 
requirements of direct solver based methods. 

With respect to the improved efficiency of relaxation 
methods for the equations of fluid flow, work has been done 
using multigrid strategies [ 12-141. In contrast, however, 
the convergence acceleration strategy of the present work 
(i.e., inner iterations) is very different from a multigrid 
method. In the present work, convergence acceleration is to 
be achieved by taking advantage (at least in part) of the 
large error reductions per iteration which are associated 
with Newton’s root finding method. Where multigrid proce- 
dures can be expected to accelerate convergence particularly 
well during the initial transient phase of a solution, con- 
vergence acceleration strategies which are based on New- 

efficient overall algorithm. The combined use of multigrid 
with convergence acceleration based on Newton’s method is 
discussed in more detail in Ref. [ 151. 

After a summary of the governing equations and an over- 
view of the spatial disdetization used, the relaxation algo- 
rithms including the use of inner iterations are explained. 
Following a brief discussion, a convergence criterion for the 
inner iterations is described. Relaxation methods with and 
without the use of these inner iterations are applied to two 
test problems, and the results are discussed and compared. 
The final section is a summary of the work with the conclu- 
sions. 

GOVERNING EQUATIONS 

In the present work, the governing equations are the 
2D, unsteady thin-layer, laminar Navier-Stokes equations, 
given as 

where 

IQ> = CP, PK PC Ed’; 

{Q} is a vector of conserved variables, p is density, u and v 
are velocity components in Cartesian coordinates, and e, is 
the total energy per unit mass, and 

i;(Q)=FF(Q)+?G(Q). 

A transformation to generalized coordinates (l, v) from 
Cartesian coordinates (x, y) has been made in Eq. (l), 
where 5,, tl,, r~,, qY are metric terms, and J is the determi- 
nant of the Jacobian matrix of this transformation: 

k’(Q) = CPU, pu2 + f’, PW (pe, + WIT 

G(Q) = CPU, PW pv2 + P, (pe, + p)~lT. 

ton’s method are expected to produce gains in efficiency 
particularly well only after the transient solution is suf- P, the pressure, is evaluated using the ideal gas law, 

ficiently close to the root. These two fundamentally different 
convergence acceleration philosophies do not necessarily 
compete, but can be combined to work together for a more 

P=(Y-l)[m-p(v)], 
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and y is the specific heat ratio, taken to be 1.4, 

6(Q) = & Cg,,, go,, gvjt g,J=, ( > L 

+ a3(uu), + pr(F: 1) (a2)q’ 

and 

p is the molecular viscosity, Stokes’ hypothesis for the bulk 
viscosity (;1= - 2~/3) has been used, a is the speed of sound, 
Pr is the Prandtl number, and Re, is the Reynolds number. 

Nondimensionalization of Eq. (1) is with respect to pco 
and U,, the freestream density and velocity, respectively. 
The physical coordinates have been nondimensionalized by 
a reference length, L. The viscosity, h, has been nondimen- 
sionalized by pm, the molecular viscosity of the freestream. 
The nondimensional viscosity can be computed using 
Sutherland’s law, and a reference temperature, T,, the 
static temperature of the freestream. 

SPATIAL DISCRETIZATION 

Computationally, the governing equations were solved in 
integral conservation law form using a cell-centered finite 
volume formulation. Only an overview of the method is 
presented here, with details found in Refs. [l-5]. In this 
approach, metric terms are evaluated geometrically as the 
direction cosines of cell faces, and l/J is the area (volume in 
3D) of the cells. Flux derivatives are evaluated as a balance 
of fluxes across cell faces. As an example, this balance of 
fluxes for the jkth cell is given by Eq. (3) for an inviscid, 
steady-state solution, and for d[ = dry = 1, 

Fj+ I/2 - Fj- l/2 + G’k + l/2 - dk ~ l/2 = O, (3) 

where subscripts j, k refer to the 5, YI directions, respectively, 
and subscripts j f 1 refer to the r = constant cell interfaces of 
the jkth cell, subscripts k f $ refer to the q = constant cell 
interfaces of the jkth cell. 

The inviscid flux terms are evaluated using the upwind 
method of Van Leer [ 163, although the relaxation methods 
to be discussed herein could be used with other upwind 
methods as well. With Van Leer’s method, the inviscid 
fluxes are split into two parts according to the sign ( + or 
- ) of the eigenvalues of the Jacobian matrices of the respec- 
tive split fluxes. For example, the flux, F,, ,/,(Q,+ ,,2) is 
divided as 

F;, ,,2(Q ,+ ~2) = ++ ,,2@< ,,2) + p,-+ ,,,(Q:, ,,2)> 

where [ap ‘/aQ] has only non-negative real eigenvalues 
and [&/aQ] has only non-positive real eigenvalues. 

Upwind evaluation of the split fluxes at the cell interfaces 
is accomplished through upwind interpolation of the inde- 
pendent vector of conserved variables to the cell interfaces 
from the approximate cell centers, using the interpolating 
polynomials, 

P,;,,2=Qj+~[(l-~)V+(l+~)dl Qj 

Q ~+,,2=Qj+~-%[(l+~)V+(l--K)dl Qj+l; 

d is the forward difference operator, V is the backward 
difference operator, and 4 and K are parameters which 
control the accuracy of the spatial discretization, such that 
when 

4 = 0: first-order upwind interpolation 

4 = 1.0: higher-order interpolation, controlled by K, 
where K may take on values in the range: 
-l.O<rc< +l.O. 

Special cases are: 

K = - 1 .O, fully upwind differencing 

K = l/3, upwind biased third-order accurate 

K = + 1.0, standard central difference scheme. 

The viscous terms are handled using the finite volume 
equivalent of second-order accurate central differences. 
Details on the spatial discretization of the viscous terms are 
found in Ref. [ 11. 

RELAXATION ALGORITHMS 

Discretization of Eq. ( 1) in space (using the methods out- 
lined in the previous section) and also in time using the 
Euler implicit method results in 

$$= (R”+‘(Q)}, 
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where: 

PQ) = (QY+’ - IQ)? (5) 

superscript n refers to the current or known time level (or 
outer iteration). {R(Q)} is called the residual, everywhere 
equal to zero for a steady-state solution. 

Linearization in time about the known (nth) time level 
results in 

(& CII -[y]“} {AQ} = W(Q)l, (6) 

where [I] is the identity matrix, and [aR(Q)/aQ]” is con- 
structed of (4 x 4) flux Jacobian matrices. When a higher 
order upwind spatial discretization for {R(Q)} is used, with 
a consistent spatial discretization of the left-hand side of 
Eq. (6), a vector equation may be written for each cell in the 
domain, given by 

C-W {AQkp 1) + CBI” {dQ> + Ccl” b’Qk+ I > 

+ CDI” {dQk-*} + [El” {bQ,+,) + CFI” {dQjp 1) 

+ Ccl” bfQ,+ I > + [RI” INA 

+ CKI” {dQj+z}= {R”(Q)), (7) 

where [A] through [I] are linear combinations of the flux 
Jacobian matrices, and [B] contains the time term. In the 
above, and throughout the remainder of this paper, 
whenever a subscript is simply “j” or “k” it is dropped for 
notational convenience. Figure 1 shows a typical “difference 
molecule,” at the jk th cell. 

When these vector equations (given by Eq. (7)) for each 
cell are assembled into a matrix, including consistently 
linearized implicit boundary conditions, the result is a 
banded, linear (in dQ) system of equations, written com- 
pactly as Eq. (8), below: 

C VQII” PQl = W’(Q)). (8) 

Streomwise+ian 

FIG. 1. 

j-2 J-I j j+l j+2 

Typical “difference molecule” representation of Eq. (7). 

In principle, Eq. (8) may be repeatedly inverted directly 
using a banded direct solver which takes advantage in terms 
of both computation and storage of the fact that outside the 
bandwidth all of the elements are zero, as the solution is 
advanced in time to steady state. However, direct inversion 
of (8) can often be impractical, even when using modern 
supercomputers, because of excessively large storage 
requirements in performing the reduction of the matrix 
[VI”, particularly in 3D. Furthermore, when the storage 
restriction is not a limiting factor for a given problem, solu- 
tion by repeated direct inversion of Eq. (8) is not necessarily 
the most efficient solution procedure with respect to overall 
CPU time [15, 171. However, despite these penalties, it is 
noted that one significant advantage of the direct solver 
approach over the conventional iterative methods which are 
in widespread use is that of enhanced robustness. In 
principle, for reasons which will become apparent, this 
enhanced robustness can also be achieved with relaxation 
methods which include the use of inner iterations (without 
incurring some of the aforementioned penalties which are 
associated with the direct solver approach). 

It is noted by inspection of Eq. (6), that for very large 
time steps, Eq. (8) (together with Eq. (5)) is exactly the well- 
known Newton’s root finding method for non-linear equa- 
tions, provided that the left-hand side of Eq. (8) is a 
perfectly consistent Newton linearization. Under these 
conditions, after the large initial transient is overcome, it 
can be shown that repeated direct inversion of (8) will 
converge quadratically to the solution of {R(Q)} = 0 [IS]. 
The remarkably rapid convergence properties of Newton’s 
method will be a contributing factor in the overall computa- 
tional performance of the inner iteration relaxation methods 
of the present work. 

One of the oldest and most widely used practices for 
advancing the solution of Eq. (8) in time is the approximate 
factorization of the system such that each time step involves 
alternating direction sweeps across the domain, and only 
requires the solution of uncoupled block tridiagonal 
systems as the sweeping proceeds [ 191 (or requires the solu- 
tion of uncoupled block pentadiagonal systems, if a higher 
order accurate upwind spatial discretization of the implicit 
terms is selected, although this typically is not done when 
using approximate factorization). Alternatively, the solu- 
tion to Eq. (8) may be advanced by standard relaxation 
strategies, which are developed as follows: 

Let [VI” of Eq. (8) be divided conveniently into two 
parts: 

[V]” = [M]” + [N]“. (9) 

A general relaxation algorithm is then written as 

Chfl” {dQi> = {R”(Q)} - CNI” {dQ’-I}. (10) 
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Superscript i, i= 1, 2, 3, 4, . . . . is the inner iteration index 
and {de”} is taken to be zero. If inner iterations are not 
performed, i is simply one. 

Many choices of standard relaxation algorithms are 
possible selections for use in performing the inner iterations, 
represented by Eq. (10). In addition, over and/or under- 
relaxation may be incorporated into these inner iteration 
strategies. The relaxation algorithm chosen for application 
in the present work is alternating forward and backward 
vertical line Gauss-Seidel (VLGS) iteration in 2D. For both 
the forward and backward sweeps, coefficients [A] through 
[E] of Eq. (7) are included in the [M] matrix of Eq. (9). 
For the forward sweep, coefficients [F] and [i7] are also 
included in [M], with coefficients [G] and [I] included in 
matrix [N]. On the backward sweep, [G] and [I] are part 
of [M], where [F] and [R] are included in [N]. 
Compactly written, the forward sweep is given by (11) 
below, where JEND is the total number of vertical columns 
of cells in the domain: 

----- 
CA, 4 C, D, El; {de;} 

= {Ri”} - [Fly {LW-~} - [al; {@-2} 

- [C]; {AQ;;;} - [I]; {AQ;;;} 

j = 1, 2, 3, . . . . JEND. (11) 

The backward sweep is 
- - - - - 

CA, B, C, D, El; {dQ;> 
= {Ri”} - [F]; {dQj:;> - [R]; (AQ;:;} 

- Ccl; @Q;+,> - [II; hfQ;+,> 
j= JEND, . . . . 3, 2, 1. (12) 

Note that the forward and backward sweeps require an 
LU factorization of a block pentadiagonal matrix, [A, B, C, 
D, Elj, one such matrix for each vertical column of cells in 
the domain. Since the coefficients are constant at a fixed n, 
the line LU factorizations may be repeatedly used for all 
inner iterations. 

Storage requirement for the complete LU factorizations 
of the block pentadiagonal matrices is large but quite 
manageable in 2D on modern supercomputers, even for 
large meshes. As an important advantage over the direct 
method, it is noted that the storage requirement for this 
iterative algorithm (Eqs. (11) and (12)) is smaller than that 
required by a banded direct solver or a sparse matrix solver. 

When the LU factorization of the block pentadiagonal 
matrices is stored over the entire field, the factorization 
procedure is vectorizable over the number of lines in the 
sweep direction. The back substitution procedure is not 
vectorizable over these lines because of its recursive nature, 
which is seen by inspection of Eqs. ( 11) and ( 12). Of course, 

on any given line, the LU decomposition and both the 
forward and backward substitution steps could be vec- 
torized over the bandwidth, but in general this is not done. 
Having complete stored LU factorizations, after the first 
iteration, subsequent forward and/or backward inner itera- 
tion sweeps are purely repetitive back substitution proce- 
dures. Recomputation of {R”(Q)} (which includes complete 
fluxes and explicit boundary conditions) is not necessary, 
nor is recomputation of any implicit terms. All that is 
required on each inner iteration is assembly of the known 
terms on the right-hand side of Eq(s). (11) and/or (12) and 
back substitution for {de’}, using the stored LU factoriza- 
tions. Update of the solution (Q>“” using Eq. (5) is done 
only after the inner iterations are completed for a given 
outer iteration level. 

The previously outlined line inner iteration strategy is 
very similar (with respect to programming considerations) 
to a more conventional CPU savings strategy for implicit 
algorithms which does not use inner iterations, but where 
the line LU factorizations are stored over the entire domain 
and reused for a specified number of (outer) iterations. 
However, unlike when using inner iterations, in this method 
the solution for {Q}‘+’ is updated using Eq. (5), and the 
complete residual must be recomputed on each iteration, 
including iterations which employ reuse of the LU factoriza- 
tions. More detail on the use and effectiveness of this proce- 
dure is documented [20]. Therefore, existing codes which 
currently employ this conventional CPU savings method 
could easily be modified to include the option of performing 
the line inner iteration strategy of the present work. 

DISCUSSION 

The overall goal of the inner iteration strategy is to 
produce a solution procedure having improved convergence 
properties in terms of reductions in total CPU time. 
Convergence or divergence of the inner iteration relaxation 
strategy at each outer iteration will depend on the condi- 
tioning of the [I’]” matrix of Eq. (8). For a first-order spa- 
tial discretization, [I’]” is diagonally dominant, regardless 
of the time step size, and thus convergence of the inner itera- 
tions of Eqs. (11) and (12) is unconditionally assured at 
each outer iteration. For higher-order spatial discretiza- 
tions, diagonal dominance of [VI” is lost as the time step is 
increased [ 11. Therefore, in the higher-order case, for 
arbitrarily large time steps, convergence of the inner itera- 
tions of Eqs. (11) and (12) cannot be guaranteed. To 
achieve convergence, the use of a small time step and/or 
under-relaxation may be required. 

INNER ITERATION CONVERGENCE CRITERION 

In the present work, a convergence criterion for the inner 
iterations has been developed and applied in the two test 



UPWIND RELAXATION METHODS FOR NS EQUATIONS 13 

problems which are to be presented. While this convergence 
criterion is very simple and easy to apply, it does not com- 
pletely eliminate all of the “guess work” and problem 
dependency which is found in its use. The convergence 
criterion begins by defining 

{E;} = lnAQi} - {“AQ”}, (13) 

where (&;I) is an error term at the nth outer iteration, 
{ “AQi} is an iterative solution to Eq. (10) at the n th outer 
iteration, after the ith inner iteration, and (“AQ”} is the 
solution to Eq. (8) by direct inversion at the nth outer 
iteration, where superscript D is for emphasis that it is the 
solution that would be obtained by a direct method. 

Substituting Eq. (13) into Eq. (8) and rearranging yields 

{nAQi} = [VP’]” {R”} + {E;;). (14) 

From (14) note that { s;f } must be made “small” compared 
to [V-i]” (R”}, for {“AQj} to approach the direct solu- 
tion of Eq. (8) given by { “AQ”). Therefore, in terms of 
Euclidian norms, for convergence, it is required that 

ll{~;;)ll~ IIcv-‘Y {WII. (15) 

Clearly it is impossible to evaluate either the right- or left- 
hand sides of (15) without first solving Eq. (8) directly. 
Thus, instead of II { sl;} 11, the left-hand side of inequality (15) 
is replaced by II (~7) 11, where 

{E;} = {nAQ’} - {“AQ’-‘}. (16) 

The justification is found in that if II {s’f } II (which is easily 
evaluated) is made progressively smaller, then II {E:} II must 
also be made smaller, and the inequality (15) will be 
satisfied. The convergence criterion can now be written: 

Now let 

liiE?}II 6 ll[v-‘l” {R”)It. (17) 

cn= lW’QD>Il. 
ll{R”)II ’ (18) 

then, using Eqs. (8) and (18), Il[V-‘1” {R”}II = 
C” /I {R”)II, and (17) becomes 

lI~~‘IIlI +c” II(R” (19) 

As the steady state is approached, C” approaches a 
constant; i.e., 

c”-’ N C”, 

which by substitution into (19) yields 

II(~ &Cnp’ II(R” (20) 

All the terms of (20) are now easily evaluated at each outer 
(nth) iteration. The final form of (20) used in the calcula- 
tions is 

log,, ll(~;}/I dhz,, c”p’+log,, ll{R’%I -TOL (21) 

where TOL is a user-specified tolerance (in orders of 
magnitude) that the left-hand side of (20) is to be reduced, 
compared to the right-hand side. Appropriate values of 
TOL were found for the test problems by numerical 
experimentation, to be shown subsequently. 

COMPUTATIONAL RESULTS 

All calculations to be presented were performed on an 
IBM 3090 vector processing computer. The inner iteration 
strategy was applied to two test problems, including both a 
supersonic and a subsonic test case. For each of these 
problems, the following procedures were applied: 

1. As a preliminary consistency check, a true Newton 
method was applied to the problem by repeated direct LU 
decomposition of Eq. (8), (using a vectorized banded 
solver) with the time step set to lo’*. Convergence of the 
problem in all cases was taken to be when the L, norm of 
the residual was reduced to machine zero (about 13 orders- 
of-magnitude in double precision). As expected, once within 
the range of “attraction to the root,” the direct solver 
converged the solution quadratically. 

2. For consistency, it was confirmed that the inner 
iteration strategy would in fact duplicate the quadratic 
convergence of the direct solver. 

3. The initial condition which was used in all test cases 
was the specification of freestream conditions throughout 
the flowtield. 

4. Before either the inner iteration or the direct solver 
method was applied to the problems, the L, norm of the 
residual was reduced two orders of magnitude using alter- 
nating forward/backward VLGS without inner iterations. 
This initial residual reduction was accomplished using a 
starting constant Courant number for each cell of 1.0, and 
the Courant number was then increased in inverse propor- 
tion to the decrease in the L, norm of the residual. This 
initial residual reduction was performed because the use of 
VLGS with inner iterations was found to be inefficient com- 
pared to VLGS without inner iterations at this stage. That 
is, although the inner iterations converged rapidly at this 
stage, the net result was no appreciable increase in the rate 
of error reduction after each outer iteration, regardless of 
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how many inner iterations were performed. Consequently, 
the most computationally efficient procedure was found to 
be the use of a single VLGS relaxation pass for each outer 
iteration during this initial transient phase of the solution. 

5. For each of the two test problems, the inner iteration 
strategy was applied using the inner iteration convergence 
criterion of inequality (21). For each problem, four values of 
TOL (TOL = 2,3,4, and 5) from (21) were tested and com- 
pared. Finally, the best of these results using inner iterations 
were compared to standard forward/backward VLGS 
without inner iterations. 

6. Spatial accuracy for the two test problems was 
chosen and applied as follows: 

a. Inviscid terms, streamwise direction, were second- 
order accurate, fully upwind (rc = - 1.0). 

b. Inviscid terms, normal direction, were third-order 
accurate, upwind biased (K = l/3). 

c. Viscous thin-layer terms were second-order 
accurate, central “differences.” 

7. The molecular viscosity of the two (laminar) test 
problems was set to be everywhere a constant, equal to the 
viscosity of the freestream. 

TEST PROBLEM ONE 

The first test problem was a M, = 2.0 shock interaction 
with a laminar boundary layer on a flat plate. On the left 
(inflow) boundary, all variables were specified and held 
fixed, where the shock jump conditions based on inviscid 
theory were used to generate the shock. On the top 
boundary, all variables were held fixed at the value of the 
jump conditions, which is an over-specification of boundary 
conditions there. On the lower boundary, flow symmetry 
was applied before the plate, and adiabatic, no-slip 
conditions were applied on the plate. All variables were 
extrapolated on the right (outflow) boundary. More details 
on this problem are found in Refs [ 1, 21, 223. 

Figure 2a shows the pressure contours, and Fig. 2b shows 
the skin friction (indicating flow separation) for computa- 
tional results on a 61 x 113 grid. Of course, points were 
clustered near the lower boundary to assist in resolving 
viscous effects near the wall. As expected, these results are in 
close agreement with those of Ref. [ 11. 

For testing of the relaxation algorithms, the remainder of 
the results which are to be presented for this problem were 
performed on a coarser, 31 x 57 point grid (with grid 
stretching near the wall). In addition, when performing the 
inner iterations, the time step was set to lo’*, and only the 
forward (left to right) sweep given by Eq. (11) was used. For 
the inner iterations on this problem, this was found to be 
slightly more efficient than the use of alternating 
forward/backward sweeps. Finally, for the inner iterations, 
successive line over-relaxation (SLOR) was used with a 
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FIG. 2. (a) Test problem l-pressure contours for shockjlaminar 
boundary-layer interaction (61 x 113 grid). (b) Test problem l-skin 
friction for shock/laminar boundary-layer interaction (61 x 113 grid). 

relaxation parameter omega (0) of 1.15. The use of SLOR 
was found to slightly improve the overall convergence rate 
of the inner iterations. 

Figure 3 is a plot of the L, norm of the residual vs. the 
outer iteration index, where the results from application of 
a direct solver are compared to the inner iteration strategy. 
The horizontal lines in the plot represent the residual level 
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FIG. 3. Test problem l-quadratic convergence of direct solver and 
inner iteration methods. 
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which was obtained after each iteration using the direct 
solver. After the second Newton iteration, convergence is 
quadratic. Included in Fig. 3 next to each point is the 
number of inner iterations which were used for each outer 
iteration, in order to agree with the direct solver. At each 
outer iteration, this number is roughly a minimum, found 
by trial and error. 

Figure 3 in no way illustrates the computational 
efficiency of the relaxation method compared with that of 
the direct solver, because that is not its intended purpose. In 
short, however, it is noted that on all test cases of the 
present research, the relaxation methods were seen to be 
superior to the direct solver in terms of both overall CPU 
time as well as computer storage requirements. Explicit 
comparison of the computational efficiency of the direct 
solver method with that of the conventional VLGS algo- 
rithm for the Navier-Stokes equations is found in Ref. [15]. 

Figure 4a is a plot of the L, norm of the residual vs. CPU 
time using the inner iteration strategy, and the convergence 
criterion of inequality (21). Values of TOL (from inequality 
(21)) include 2,3,4, and 5. The total CPU time includes the 
CPU time required for the initial two orders-of-magnitude 
reduction in the residual, which required 37 VLGS sweeps 
(without inner iterations) across the domain. In terms of 
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FIG. 4. (a) Test problem l-inner iteration method using four values 
ofTOL (from inequality (21)). (b) Test problem l-inner iteration method 
using four values of TOL (from inequality (21)). 

overall CPU time to convergence at machine zero, the most 
efficient case was obtained with TOL = 2. As TOL was 
increased progressively to 5, each case was progressively less 
efficient, although not markedly so. It is noted that for 
TOL=4, convergence of the outer iterations is almost 
quadratic, and for TOL = 5, quadratic convergence is 
obtained. Although it is not explicitly seen in the figure, the 
total CPU time of the quadratically converging inner itera- 
tion case of Fig. 3 (where the number of inner iterations for 
quadratic convergence is minimized by trial and error) was 
about 93.2 s. This is a few seconds longer than for the non- 
quadratic case of TOL = 2 in Fig. 4a. It is therefore implied 
that quadratic convergence of the outer iterations is not 
necessarily an important requirement in developing the 
most efficient inner iterative procedure. 

Figure 4b is a plot of number of inner iterations used vs. 
outer iteration number for each of the four cases presented 
in Fig. 4a. Of course, as TOL is increased, the number of 
inner iterations required for convergence at each outer 
iteration is markedly increased, but the number of outer 
iterations to machine zero is markedly decreased. 

Figure 5 is a comparison of three relaxation methods, 
where the L, norm of the residual is plotted vs. total CPU 
time. One of the three cases represents the inner iteration 
procedure using TOL = 2, also shown in Fig. 4a. The 
remaining two cases in Fig. 5 represent two cases of 
forward/backward VLGS without inner iterations. In both 
of these two cases, the Courant number was started at a 
constant value for each cell of 1.0 and was increased without 
bound as the L, norm of the residual decreased, as pre- 
viously discussed. These two VLGS cases without inner 
iterations had only one difference. One of these cases 
employed a CPU saving strategy where inner iterations are 
not performed, but where the line LU factorizations are 
reused for a specified number of outer iterations. For the 
results shown in Fig. 5, when employing this conventional 
CPU saving method, 25 reuses of each set of new line LU 
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FIG. 5. Test problem l-VLGS with inner iterations compared to 
VLGS without inner iterations. 
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factorizations was specified, which was found by numerical 
experimentation to be near optimal for this problem. 

From Fig. 5, it is shown that both convergence accelera- 
tion methods which were tested can improve standard 
VLGS. The CPU time required to drive the residual to 
machine zero by using the inner iteration strategy is about 
65 % of the CPU time required by the conventional reuse of 
LU factorizations method, when the CPU time for the 
initial two orders-of-magnitude residual reduction is not 
included. 

TEST PROBLEM TWO 

The second test problem was a M, = 0.5 laminar flat 
plate boundary layer problem, Re, = l.EO5, where L is the 
length of the plate. On the left (inflow) boundary, entropy 
and total enthalpy were held fixed, the u component of 
velocity was fixed to be zero, and the u component of 
velocity was extrapolated. On the top and right (outflow) 
boundaries, density and both components of velocity were 
extrapolated, and the pressure was held fixed at the 
freestream value. On the lower boundary, flow symmetry 
was applied before the plate, and adiabatic no-slip condi- 
tions were applied on the plate. 

Calculations were performed on a 3 1 x 41 point grid, with 
clustering near the wall. Figure 6 shows results of the 
calculations at X/L locations of l/3, 2/3, and 1.0, which are 
compared with the Blasius similarity solution, taken from 
Ref. [23]. Comparison of the computed results with the 
Blasius solution is excellent. 

As in the first test problem, when performing inner itera- 
tions, the time step was set to 10”. In contrast with the first 
test problem, where only the forward sweep was used, when 
performing inner iterations for the second test case, alter- 
nating forward/backward relaxation sweeps (Eqs. ( 11) and 
(12)) across the domain were employed. 
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FIG. 6. Test problem Z+omputed results at three X/L stations 
compared with the Blasius solution. 

When using a very large time step, the penalty in loss of 
diagonal dominance for this subsonic test problem was so 
great that the inner iteration relaxation procedure became 
divergent, during each outer iteration. The use of successive 
line under-relaxation was required at all times to force 
the divergent scheme to become convergent. A relaxation 
parameter, omega (w) of 0.8 was used for all results to be 
presented. This value was found by numerical experimenta- 
tion to be about the maximum allowable value for con- 
vergence, and at the same time appeared to be the optimum 
value in terms of overall computational efficiency of the 
inner iterations. 

Lack of diagonal dominance and the forced use of under- 
relaxation in the second test case caused an increase in the 
number of inner iterations which were necessary to produce 
convergence to a required tolerance. Figure 7 is a con- 
sistency check (similar to Fig. 3) demonstrating the ability 
of the inner iterative scheme to produce error reductions at 
each outer iteration which agree with the quadratically 
converging results from the use of a direct solver. 

Figures 8a and 8b for the second test problem were 
produced using identical procedures to those which were 
used and discussed for Figs. 4a and 4b (respectively) of the 
first test problem. Again the initial residual was reduced two 
orders-of-magnitude before inner iterations were performed. 
In this case, 50 standard VLGS sweeps were required for 
this initial residual reduction. 

In Figure 8a, the most efficient test case was again found 
to be when using a value of TOL = 2, with decreasing over- 
all efficiency noted with increasing values of TOL. However, 
in the second test case, increases in the value of TOL 
resulted in significantly greater decreases in overall com- 
putational efficiency when compared with the results of the 
supersonic test problem. As a final observation, although it 
is not explicitly seen in the figure, it is noted that the total 
CPU time for the quadratically converging inner iteration 
case of Fig. 7 was about 295.2 s. This is significantly greater 
than for some of the non-quadratic cases of Fig. 8a. Thus, 
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FIG. 7. Test problem 2+uadratic convergence of direct solver and 
inner iteration methods. 
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FIG. 8. (a) Test problem 2-inner iteration method using four values 
ofTOL (from inequality (21)). (b) Test problem 2-inner iteration method 
using four values of TOL (from inequality (21)). 

this problem shows that in applying an inner iterative 
method, obtaining quadratic convergence for the outer 
iterations is not essential and can even be less efficient than 
a non-quadratic procedure. 

Figure 9 of the second test problem is identical in function 
to Fig. 5 of the first test case. For the cases involving VLGS 
without inner iterations, the Courant number was started at 
one and increased to a maximum Courant number of 250, 
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of LU of LU 

-16 I I 
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FIG. 9. Test problem 2-VLGS with inner iterations compared to 
VLGS without inner iterations. 

as the residual decreased. It is clear that only a very 
moderate gain in overall computational efficiency is 
achieved through using the line inner iteration method 
when compared to standard VLGS. However, in the second 
test case, if the conventional reuse of the line LU decom- 
positions is used, a greater increase in overall efliciency over 
the standard VLGS procedure is realized compared to that 
increase in overall efficiency which is obtained using the 
inner iteration method. 

SUMMARY AND CONCLUSIONS 

An upwind line relaxation method using inner iterations 
for the Navier-Stokes equations has been tested on two 
classic test problems. With the inner iteration procedure, 
the large memory requirements associated with a direct 
solver method are avoided. The ability of the inner iteration 
method to mimic the quadratic convergence of Newton’s 
method has been confirmed. It has been shown that 
obtaining maximum computational efficiency from the 
inner iteration method does not depend on obtaining 
quadratic convergence of the outer iterations. 

A convergence criterion for the inner iterations has been 
developed and tested. While this criterion is not indepen- 
dent of the code user and the problem being solved, the 
method is easy to program and apply. For the two test 
problems of the present work, this convergence criterion 
was found to be effective in helping to automate the 
convergence criterion requirements of the inner iterative 
procedure. 

In all test cases, the use of inner iterations during initial 
transients was found to be inefficient. This is attributed to 
the fact that Newton’s method does not yield large reduc- 
tions in the residual until the transient solution is brought 
sufficiently close to the root. Alternative convergence 
acceleration methods, such as multigrid and mesh 
sequencing, may be preferable during this phase of the 
solution procedure. Thereafter, a convergence acceleration 
algorithm based on Newton’s method (such as the algo- 
rithm of the present work) is effective in efficiently achieving 
large error reductions to machine zero. 

For the supersonic test case, the inner iteration procedure 
was found to be effective in reducing the overall computa- 
tional time to convergence to machine zero when compared 
to all other algorithms examined. In the subsonic test case, 
the inner relaxation procedure became divergent. This was 
caused by poor matrix conditioning resulting in a loss of 
diagonal dominance when using an essentially infinite time 

step. Successive line under-relaxation was required to 
achieve convergence of the inner iterations for this problem. 
However, this resulted in a slow convergence rate for the 
inner iterations. Consequently, for the subsonic test case, 

the inner iteration method was found to be less efficient 
when compared to the conventional reuse line LU factoriza- 
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